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ABSTRACT
Developing and maintaining resilient road networks is a key strat-

egy for meeting several UN sustainable development goals. Cur-

rently about 75% of the road network in Africa is unpaved, making

it especially susceptible to damage from precipitation (which ac-

counts for 80% of their degradation). Global climate change will

cause higher intensity weather events, which can take the form of

stronger and more damaging floods. Infrastructure is a key aspect

to economic development, and the World Bank has recently fo-

cused on “closing the infrastructure gap in Africa”. In this paper we

propose a general framework for recommending road network im-

provements under different flooding scenarios in order to minimize

the losses to network accessibility. This framework can consider

different optimization objectives and budget constraints in order to

give policy makers, investors, or relief organizations an idea of the

trade-offs associated with these parameters. We demonstrate our

framework in Senegal, by using flood data from Fathom.Global and

mobility data from Orange S.A. We find that there are trade-offs

between different budgets, and optimization objectives, and discuss

their broader impact on sustainability objectives.
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1 INTRODUCTION
Climate change is a global concern that is causing widespread

disruptions to environmental, socioeconomic systems and human

health. Recent studies have assessed the risks posed by extreme

weather events, rising sea levels, and altered temperature and pre-

cipitation regimes to essential infrastructure systems. Damages to

infrastructure are of particular concern for developing countries,

where investment in energy, water, communication and transport

infrastructure is a key strategy for meeting several UN sustainable

development goals. For instance, estimated costs of road repair

and maintenance across Africa under current climate change pro-

jections exceed $150 billion, diverting significant funding from

initiatives for expansion and development. Thus, climate change

will exacerbate existing socioeconomic vulnerabilities and threaten

the success of crucial development schemes unless steps are taken

to proactively mitigate these costs.

Road networks are especially important to supporting socioe-

conomic development in the least developed countries, since they

provide access to services like education and healthcare and enable

overland trade flows that are integral to the growth of developing

economies. Currently about 85% of the road network in Western

Africa and 88% of that in south central Africa are comprised of

unpaved roads [3], making them highly susceptible to damage from

precipitation which accounts for 80% of their degradation [2].

The first step toward developing climate-resilient road infrastruc-

ture is to analyze the exposure to climatic pressures. The probability

of roads being inundated is a plausible measure of climate vulner-

ability given the prevalence of unpaved roads and the increasing

incidence of flooding in Africa in recent decades. Similarly, the sim-

ulated maximum flood depth over roads, derived from hydrological

models, can provide a worst case estimate of the difficulty of travers-

ing a road. Secondly, the contribution of each road segment to re-

gional connectivity must be assessed. Roads that are both critical

thoroughfares and frequently flooded under historical or projected

climatic conditions should be prioritized for weather-proofing and

other upgrades. After flood risk and mobility impacts are deter-

mined, optimization techniques can be used to determine explicit

plans for allocating road maintenance funds. Multiple sustainable

development objectives can be explored within this framework,

such as maximizing rural connectivity or minimizing the expected

number of people isolated due to flooding. This approach has the

potential to minimize the long-term cost of establishing a reliable

road network while helping to buffer vulnerable populations from

extreme weather events.

Our work aims to implement the framework described in the

previous paragraph. Our objective is to find which roads in Senegal

should be reinforced to prevent flooding, given a fixed budget for

infrastructure investments, in order to best help the most people in

Senegal. Our solution to this problem consists of three computa-

tional modules, pictured in Figure 1. Each module incorporates data

from external sources as well as outputs from previous modules

to perform its computation. The modules respectively calculate 1.)

which roads in Senegal are likely to be flooded under different con-

ditions; 2.) how different flooding scenarios will impact the mobility

of persons in Senegal; and 3.) how to best fortify the road network

against flooding to minimize the loss of mobility under different

flooding scenarios. We use this framework in the context of Senegal

by leveraging flood data from Fathom.Global (previous SSBN) and

mobility data from Orange S.A., but note that our framework can be

applied more broadly. Specifically, because the functionality of each

module is self-contained, i.e. decoupled from the whole system, it

would be straightforward to substitute modules that perform each

computation differently, e.g. substituting module 1 for one that

computes wildfire risk near each road segment.

The organization of this paper is as follows. In Section 2, specif-

ically, 2.1, 2.2, and 2.3, we describe the operation of each of the

three modules, we present computational results in Section 3, and

finally discuss the results and broader application of our methods

in Section 4.



Figure 1: Our system ismadeup of three connectedmodules: a “flood risk computation”module, “populationmobility impacts”
module, and “risk aware road fortification recommendation” module. Each module relies on external data and outputs from
the previous modules.

2 METHODS
We divide the problem of upgrading the road network in Senegal

into three distinct components. The first task (Section 2.1) is to

determine which parts of the Senegalese road network are at risk

of inundation or damage from flooding events. It is possible to

prioritize roads for repair simply on the basis of their exposure

to flood risk, but this does not take into consideration the degree

to which different roads are used by the population. Ideally, the

upgraded roads should be those that are both at high risk of being

flooded and have a high contribution to the accessibility afforded by

the road network. Thus, the second component (Section 2.2) of our

approach determines the travel demand between different regions of

Senegal and howwell the road network supports the mobility of the

population under different flooding scenarios in terms of a number

of accessibility measures or metrics. The final component (Section

2.3) of our approach optimizes the allocation of a fixed budget to

upgrade a subset of roads such that the accessibility provided by the

road network is maximized. Each of these components is handled

in an independent module that can be modified to use different

methods from the ones used in this work.

2.1 MODULE 1: Estimating Flood Risk
The purpose of this computational module is to determine which

roads in Senegal are flooded under different scenarios. This module

takes two GIS data sources as input–a road network and flood

raster–and subsequently outputs both the flooded and unflooded, or
traversable, parts of the road network. The data and methods used

in this module are described below.

2.1.1 Road and Flooding Data. We obtained a shapefile

of the highway system in Senegal from ArcGIS containing roads

classed as national and regional roads and highways [1]. We manu-

ally preprocessed and cleaned this road network data by connecting

all roads that lead to the same settlement
1
, adding in the ‘N4’ high-

way that passes through The Gambia, and joining several pairs of

disconnected road endpoints that are likely data errors. We then

represent this input road network as a weighted, undirected graph

G = (V ,E) consisting of edges E representing road segments and

vertices V representing the latitude-longitude coordinates of the

endpoints of the road segments. Each edge has an associated weight

denoting the length of the road segment. The graph representation

of the Senegalese road network has 6,917 vertices and 7,175 edges

all within a single connected component. We refer to this as the

business-as-usual road network to distinguish it from networks

when some of the edges are lost due to flooding.

In addition to the ArcGIS road network, we used Fathom-Global

(previously known as SSBN-Global) flooding data [9, 10] for Senegal

as input to this module. These data are comprised of rasters of

the flood depth for floods of different severities. Specifically, each

flooding raster has a size of 8000 × 6000 cells, where each cell

represents an area of approximately 90m2
and the value of the

raster cell is the maximum flood depth in meters within the 90m2

area during a flood of a specified severity. The severity of a flood is

characterized by its return period λ, which is the estimated time

interval between flooding events of a similar intensity. A flood with

return period λ years has a
1

λ chance of occurring in any given year.

Intuitively, a 500 year flood is more extreme and less likely to occur

than a 200 year flood. The SSBN data includes fluvial (river based)

and pluvial (rain based) flooding scenarios for 10 different flooding

1
In the raw ‘Senegal Roads’ dataset, many of the roads end at the outskirts of cities,

whereas in reality they are connected through urban roads that are not included in

the dataset.
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return periods: 5, 10, 20, 50, 75, 100, 200, 250, 500, and 1000 years.

Because the distinction between fluvial and pluvial flooding is not

important for determining which populations could be affected

by inundated roads, as a preprocessing step we sum the fluvial

and pluvial flooding rasters for each return period. Formally we

represent each flooding raster as a matrix, Fλ ∈ R8000×6000≥0 , whose

entries represent the combined maximum flood depth in meters at

each cell in the case of a λ return period flooding scenario.

2.1.2 ClassifyingRoads as Flooded. Next, we describe
the process used to designate whether or not a road is considered

flooded during a specific flooding event. We introduce a parameter

α which defines the flooding threshold level over which a cell is

classified as flooded. That is, only raster cells with a flood depth

Fλi j ≥ α are considered flooded under a given return period flood

scenario and flooding threshold. Flooding thresholds are commonly

used to distinguish between minor, moderate and major flooding,

and so by varying α from small to large threshold values we shift

our focus from all flooded cells to only those with relatively severe

flooding. The α parameter can also be regarded as a tolerance level

for flood depth beyond which roads within a cell become impass-

able. Given that the Fathom-Global flooding data rasters contain

the maximum flood depth within each cell and that we sum pluvial

and fluvial flooding to obtain a single flood raster, the flooding data

we use reflects the worst-case flooding level under a given return

period scenario. However, the true flood depth observed within the

cell may be lower than this worst-case level, e.g. if there are local

features such as drainage or elevation that reduce the extent to

which the roads are submerged. From this standpoint, the α param-

eter is the maximum flooding that can be expected to occur before

mobility through the cell is affected. In this case considering low to

high values of α equates to assessing impacts under conservative

to optimistic estimates of flood tolerance.

Then, for a return period λ flood and a flooding threshold of α ,
we say that a road (u,v) ∈ E is flooded if the road segment connect-

ing u and v passes through any {i, j} cells in Fλ for which Fλi, j ≥ α .

This is based on the assumption that even if only a small stretch

of a road segment is too flooded to traverse, the road segment is

impassable. We obtain the subgraph of the BAU road network G
that is considered unflooded under flood scenario λ and thresh-

old α , Gλ,α
U = (V ,Eλ,αU ), consisting of the original set of vertices

V and any edges corresponding to road segments not affected by

flooding Eλ,αU . In the second computational module (Section 2.2)

we use this unflooded road network Gλ,α
U to calculate how differ-

ent accessibility measures of the road network are impacted by a

flooding scenario. Similarly, we can construct a flooded subgraph of

G,Gλ,α
F = (V ,Eλ,αF ), in which only edges representing roads that

are flooded are included. For each edge in the flooded graph, we

also compute the flooded distance or the length of the road that

passes through flooded raster cells to estimate how much of the

road would need to be upgraded in order to make the road segment

traversable again. In the third computational module (Section 2.3)

we consider the edges in the flooded road network Gλ,α
F as can-

didate roads to reinforce against flooding, in order to recover the

accessibility provided by the road network. Note that the unflooded

and flooded edge sets are mutually exclusive, i.e. EU ∩ EF = ∅, and

EU ∪ EF = E. An example of a road network with road segments

classified as flooded or unflooded can be seen in Figure 2, which

shows the predicted flood depth for a 100-year flood in Senegal

and the road segments that would be considered impassable due to

floodwater over 1m.

2.1.3 Effects of Flooding onRoadNetwork. As the
severity of flooding scenarios λ increases (with increasing return

period), the number of unflooded road segments declines, the total

length of flooded roads rises and the fragmentation of the road

network into disconnected regions increases (Figure 3). As the

flooding tolerance α increases, each of these effects becomes less

pronounced.

2.2 MODULE 2: Quantifying Mobility over the
Road Network

The second computational module focuses on quantifying the ef-

fects that flooding scenarios will have on the mobility of people

living in Senegal. Themodule takes as input road networks obtained

from the Flood Riskmodule (Section 2.1) and baseline travel demand

data, derived from anonymized call detail records (CDRs) from the

Orange cellular provider. Using these data, it calculates global road

network accessibility metrics, such as average trip distance, that

measure the ease with which individuals can reach desired destina-

tions throughout Senegal. We compare the accessibility metrics of

the business-as-usual road network to those from different flooding

scenarios in order to quantify the disruption the floods will have on

mobility in Senegal. This process is split up into 4 parts: 1.) dividing

Senegal into zones based on Orange cell tower data; 2.) calculating

the distances between each pair of zones; 3.) deriving travel demand

between zones from the Orange data; and 4.) calculating the road

network accessibility measures. Each of these parts is described in

the following sections.

2.2.1 Cell Tower Zones. The CDR data from Orange con-

sists of fine-grained trajectories for sets of anonymized users. These

trajectories give a time indexed sequence of cell towers used by each
user, thus the minimum resolution travel demand data we can de-

rive will be between areas covered by these cell towers. Here the

first step is defining the spatial area covered by each zone. The

Orange data gives the approximate latitude-longitude locations of

the 1666 towers that service Senegal. We use these points to divide

Senegal into “cell tower zones” by constructing Voronoi regions

from the locations of the cell towers. The zone for each cell tower

is defined as the polygon that contains all points that are closer

to that tower than to any of the other cell towers. This is a very

common technique for deriving zones from point data, and has been

used by several papers during the Orange Data for Development

Challenge[8]. Figure 4 shows the location of each cell tower as a

purple point, and the resulting zones.

2.2.2 Zone-to-zone Distance. The second step in calcu-

lating the global accessibility measures is calculating the distance

between each pair of zones over the road network. Formally, we

create a matrix D from a given road network Gλ,α = (V ,Eλ,α ),
where an entry Di j represents the average shortest path distance

over paths with origin vertices in i and destination vertices in j.
Recall from Section 2.1.1 that we represent the road network as a
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Flooding map

Flooded roads

Figure 2: Flooding scenario for λ = 100 and α = 1.0. (Top) map shows the maximum flood depth (in meters) over all of Senegal.
(Bottom) map shows the road network, where the segments that are considered flooded under α = 1.0 are colored red.

graph, where each vertex is indexed by its latitude-longitude loca-

tion. Using this information, for each zone i , we calculate Zi , the
set of vertices from the road network that are within its boundaries.

If a zone j has less than three vertices within its boundaries, i.e.

|Z j | < 3, we add the nearest vertices (as measured to the zone’s

centroid) until it has three associated vertices. Now, we calculate

an entry Di j as the average distance over all shortest paths that

have an origin in Zi and destination in Z j . Note that for some given

pairs of zones, especially in flooded road networks, there may be

no paths available between some pairs of vertices from Zi × Z j , i.e.
it may be the case that there exists some u ∈ Zi , and v ∈ Z j where
u andv lie in different connected components of the given road net-

work. We define Di j as the average shortest path distance between

pairs of vertices for which there is a valid path. If there are no valid

paths between i and j we set Di j to an arbitrarily large number

(because Di j is only used in cases where there are feasible paths
between i and j, the specific value does not matter). Separately, we

calculate two matrices Cf easible and Cinf easible , where an entry

C
f easible
i j represents the number of pairs of vertices in Zi and Z j

between which a path exists, and similarly, an entry C
inf easible
i j

represents the number of pairs of vertices between which a path

does not exist
2
.

2
Note that C f easible

i j +C inf easible
i j = |Zi × Z j |.
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Figure 3: Effect of floods on number of traversable road seg-
ments, total distance of flooded roads and fragmentation of
the road network, under varying α threshold levels.

2.2.3 Deriving Travel Demand. The final data compo-

nent needed for calculating the accessibility metrics is an estimate

of the actual travel demand between each pair of zones. Without

this data, we can only calculate accessibility metrics related to the

structure of the road network. That is, without the mobility data

there is no way to quantify how the road network is used, and thus

how flooding will directly disrupt the mobility patterns of people

in Senegal.

To estimate inter-zone travel demand we use the fine-grained

mobility dataset provided by Orange. This mobility dataset contains

information from over 300,000 randomly sampled, anonymous cus-

tomers for 25 biweekly periods in 2013
3
. The mobility data gives

the spatial trajectory of each customer over a two week period

as a sequence of cell tower ids, ln , e.g. {l1, l2, · · · , lN } for a cus-

tomer that moves through N zones. Each consecutive pair of cell

tower locations (ln , ln+1) in a customer’s trajectory is considered

as a trip from cell tower zone ln to zone ln+1. We construct an

origin-destination (OD) trip matrix, T ∈ Z1666×1666≥0 , where entry

Ti j represents the total number of trips taken from cell tower zone

i to zone j by all customers over all biweekly periods. More specifi-

cally, we iterate through the trajectory for each user and increment

3
Different samples of customers were taken for each biweekly period.

Figure 4: Map of Senegal that shows the given locations of
the 1666 Orange data cell towers and their corresponding
“cell tower zones”. Each zone is colored based on the number
of outgoing trips from the derived trip data.

Tli ,li+1 for each i , i + 1 pair of cell tower locations in the trajectory.

Figure 4 shows each cell tower zone colored by the number of trips

leaving that zone, i.e. a zone i is colored by

∑
1666

j=1 Ti j . As expected,

cell tower zones near major settlements are associated with higher

numbers of outgoing trips. In particular, the cell tower zones along

highways radiating out from Dakar, such as the N1 highway to

Kaolack, the N2 highway to Thies up to St. Louis and along the

northern border, and the N3 highway through Diourbel and Touba,

have a large number of outgoing trips. In contrast, there is relatively

low travel demand from within the Niokolo-Koba National Park

and the Ferlo Nord Wildlife Reserve in eastern Senegal, reflecting

the low population density in these regions.

2.2.4 RoadNetworkAccessibilityMeasures. In re-
view, we partition Senegal into a set of 1,666 zones based on the

Orange cell tower locations, calculate the number of trips between

each pair of zones, T, and, for a given road network, calculate the

average distance between each pair of zones, D, number of infeasi-

ble paths between each pair of zones, Cinf easible , and number of

feasible paths between each pair of zones, Cf easible . Note that for
different road networks, i.e. the business-as-usual road network and

flooded road networks from different scenarios, the D, Cinf easible

and Cf easible matrices will all differ. We use these four matrices,

and the structure of the road network itself to calculate four net-

work accessibility measures as follows:

Number of connected components: A connected component

in a network is a set of vertices such that there exists a path

between every pair of vertices in the set. In the business-

as-usual scenario, the road network of Senegal is made up

of a single connected component, meaning that it possible

to reach any location in the network from any other loca-

tion. However, under flooding scenarios the road network

becomes fragmented, i.e. it is divided into many disjoint

connected components. One of the accessibility measures

5



we consider in our analyses is a count of the number of

connected components in a given road network, where the

higher the number of connected components, the more frag-

mented is the road network and the worse the impact on

mobility within Senegal.

Size of the largest connected component: Similar to the pre-

vious measure, this accessibility measure is simply the num-

ber of vertices that make up the largest connected compo-

nent. The largest connected component in the road network

will be the largest contiguous section of the road network

where people can freely move around. Note that this mea-

sure and the previous measure do not consider the derived

travel demand data and are purely structural metrics.

Percentage of infeasible trips: This measures how many of

trips cannot be completed given a road network. Formally,

we let I =
∑
1666

i=1
∑
1666

j=1
Ti jC

inf easible
i j

C f easible
i j +C inf easible

i j

be the number

of infeasible trips. Here the number of infeasible trips be-

tween an origin i and destination j is counted as the total

number of trips from i to j, multiplied the fraction of in-

feasible paths between the two zones. We assume that the

number of impossible trips is directly proportional to the

number of impossible paths between vertices in the origin

zone, and vertices in the destination zone. Thus the percent-

age of infeasible trips becomes I% = I/∑1666

i=1
∑
1666

j=1 Ti j .

Average trip length: This measure also takes into account

the trip matrix, and records the average trip distance over

all possible trips. Formally, we form a matrix F, (similar to

the scalar I value from the previous measure) where an en-

try, Fi j =
Ti jC

f easible
i j

C f easible
i j +C inf easible

i j

, represents the number of

feasible trips between zone i and zone j . Now we let L be the

global average trip distance given by L =

∑
1666

i=1
∑

1666

j=1 Fi jDi j∑
1666

i=1
∑

1666

j=1 Fi j
.

In other words, this is the total number of kilometers trav-

eled over all trips, divided by the total number of trips, thus

average trip length.

2.2.5 Accessibility Measure Results. In this section

we show several results from computing the four accessibility mea-

sures for the business-as-usual road network, and the road networks

induced by all of the flooding return periods described in Module 1,

for several values of α . Figure 5 shows a graph for each accessibil-

ity measure that indicates how the metric changes under different

flooding return periods. A notable result from these graphs is that

the rate at which trips become infeasible due to flooding outpaces

the rate at which trip lengths become longer due to flooding. The

average trip distances generally decrease in more severe flooding

scenarios, simply due to the fact that longer distance trips are not

possible in those scenarios. Predictably, the number of connected

components increases while the size of the largest connected com-

ponent decreases as flooding becomes more severe.

Additionally, we show several maps in Figure 6 that show how

the degradation of the road network will affect the mobility of peo-

ple from specific cities. The first and second rows show the road

network distance (Di j values) in kilometers for two cities, Dakar

and Tambacounda respectively, to all other zones, for different flood

scenarios. The first column shows the business-as-usual scenario

with no flooding for both cities, while the second and third col-

umn show distances under λ = 10,α = 1.0 and λ = 100,α = 1.0

respectively. As the flooding scenarios become more severe larger

sections of the network become unreachable, and sections of the

network that remain accessible are generally harder to travel to.

For example, travel from Dakar to the St. Louis region in the north-

ern portion of Senegal is relatively short in the business-as-usual

scenario, however, under the λ = 10 scenario, the shortest path

is cut off and a longer route must be taken to make the same trip.

Furthermore, under the λ = 100 scenario, the same St. Louis area is

completely cut off from Dakar. The situation in the 100 year flood-

ing return period is particularly bad for the city of Tambacounda,

as can be seen in the bottom right map. Here, only the immediate

area around the city is reachable on the road network.

2.3 MODULE 3: Optimizing Repairs over the
Network

The final module provides a decision-support tool for designing

road infrastructure improvement strategies that balance socioeco-

nomic, environmental and economic considerations. It takes the

graphsGλ,α
F andGλ,α

U representing the flooded and unflooded parts

of the road network, the monetary costs of repairing or upgrading

each road segment c(e), and a budget B as inputs to determine the

optimal allocation of funds that recovers the maximum amount of

accessibility as quantified by a given accessibility measure. This

is essentially a combinatorial optimization problem involving the

selection of a subset of items (roads to fortify) from a superset (all

affected roads). Many such problems fall into a class of problems

known as “NP-complete”, for which there are no known polynomial-

time algorithms for finding optimal solutions, and thus necessitate

the use of heuristic solution strategies that are not guaranteed to

yield optimal results. We begin by considering each of the acces-

sibility measures discussed previously as optimization objectives,

formulating each as a graph optimization problem and analyzing

its computational complexity. Then we discuss algorithms for opti-

mizing two of the accessibility measures, and present the solutions

for recommended road upgrades in both cases.

2.3.1 Optimization Problem Formulations.
(1) Minimizing the Number of Connected Components

As flooding events render road segments impassable, either

due to inundation or due to damage from exposure to fre-

quent inundations, the overall road network becomes increas-

ingly fragmented. This results in regions becoming isolated

from one another, as trips between these regions are infea-

sible. One strategy for mitigating the loss in road network

connectivity resulting from a flooding event is to re-establish

connections between isolated regions, or to minimize the

number of connected components. More formally, we up-

grade flooded roads corresponding to a set Eupдrade of edges

e ∈ Eλ,αF such that

∑
e ∈Eupдrade c(e) ≤ B and when they are

added to the unflooded graphGλ,α
U the number of connected

components in the resulting graphG = (V ,Eλ,αU ∪Eupдrade )
is minimized.

6



Figure 5: Road network accessibility metrics for different
values of α over all return periods. The business-as-usual
value is shown as a black horizontal line in each graph. From
top to bottom the accessibilitymetrics shown are: number of
infeasible trips, number of connected components, number
of vertices in the largest connected component, and average
trip length.

First, we specify that only edges e ∈ Eλ,αF whose endpoints

are in different connected components are candidates for

upgrading, since otherwise if the edge connects two ver-

tices in the same connected component then upgrading the

corresponding road segment does not reduce the fragmen-

tation in the road network. Furthermore, we only consider

the minimum cost edge connecting a pair of connected com-

ponents, since any other edge between the same pair of

connected components offers the same benefit but at higher

cost. More formally, given two connected components p
and q with corresponding vertex sets Vp and Vq , the set of

edges Epq = {ei j ∈ Eλ,αF |ei ∈ Vp , ej ∈ Vq }, we only con-

sider arg min

ei j ∈Epq
c(ei j ) as a candidate for connecting p and q.

Lastly, note that we should not add edges that create cycles

between connected components. For example suppose we

upgrade a road between connected components p and q, and
another road between q and r . We should no longer consider

any roads between p and r as candidates for repair, since

they are already connected via q.

Suppose the graph Gλ,α
U consists of K disjoint connected

components Vk such that V = ∪Kk=1Vk and Vi ∩ Vj = ∅
for i , j. We construct a second graph G ′ = (V ′,E ′) in
which there is a single vertex vk ∈ V ′ for each connected

component in Gλ,α
U , and there is at most one edge between

any pair of vertices vp ,vq ∈ V ′ whose weight is equal to
min

ei j ∈Epq
c(ei j ). Our goal is to find a tree or collection of trees

(a forest) in G ′ such that the total weight of the tree edges

does not exceed the given budget B and that spans the maxi-

mum number of vertices in V ′. This problem can be solved

optimally using a greedy algorithm (see Algorithm 1) based

on the widely known Kruskal’s algorithm for finding the

minimum spanning tree of a graph. The edges in E ′ are con-
sidered in ascending order of their repair cost, and each edge

is added as long as it does not introduce a cycle and there is

enough budget left.

Algorithm 1 Minimizing the Number of Connected Components

1: procedure MinNumCC(G ′,B)
2: Candidates← sorted(E ′, ascending)
3: Upgrade← ∅
4: i ← 0

5: while B ≥ 0 and i < |E ′ | do
6: if Candidates[i] does not form cycle then
7: Upgrade← Upgrade ∪ Candidates[i]
8: B ← B−Candidates[i] [‘weiдht ′]
9: end if
10: i ← i + 1
11: end while
12: return Upgrade

13: end procedure

(2) Maximizing Size of a Specific Connected Component
Rather than minimize the number of disconnected parts of

7



Figure 6: Maps showing the average road network distance from two cities in Senegal (top row: Dakar, bottom row: Tamba-
counda) under noflooding (business-as-usual), a 10-year flood scenario and a 100-year flood scenario, with inaccessible regions
colored black.

the road network, it may be preferable to maximize the num-

ber of regions that can be accessed from a particular location,

such as the capital or a major city or a base of operations for

the emergency mobilization of disaster response assets. In

this case the goal is to maximize the number of vertices that

can be accessed from a particular root vertex, or alternatively

to maximize the size of a given connected component. In for-

mal terms, we upgrade flooded roads corresponding to a set

Eupдrade of edges e ∈ Eλ,αF such that

∑
e ∈Eupдrade c(e) ≤ B

and when they are added to the unflooded graphGλ,α
U the

size of a specified connected component Vp in the resulting

graph G = (V ,Eλ,αU ∪ Eupдrade ) is maximized. As with the

problem of minimizing the number of connected compo-

nents, we only consider upgrading edges that are flooded

under the scenario in question, and only consider the mini-

mum cost edge between pairs of connected components as

repair candidates.

This problem can be formulated as an instance of the Budget

Prize-Collecting Steiner Tree Problem [5] on the transformed

graphG ′, where the prize p(v) associated with each vertex

in V ′ is equal to the size of the connected component it rep-

resents. That is, we seek to find a subtree that maximizes the

vertex prize subject to a budget constraint on the edge costs
4
.

This problem is computationally challenging (NP-hard) due

to both the requirement that the resulting subtree be con-

nected and due to the goal of maximizing its value. One way

4
This can also be formulated as a Budget-Constrained Steiner Connected Subgraph

Problem with Node Profits and Node Costs, see Dilkina and Gomes [4].

to solve this problem is to encode it as mathematical pro-

gram that can be solved using mathematical optimization

algorithms. The choice of whether or not to select each can-

didate edge is represented as a binary decision variable, e.g.

xe = 1 if edge e is selected for fortification and xe = 0 other-

wise. Then, the budget constraint and the objective can be

written as linear functions of these decision variables. How-

ever, the connectivity constraints are less straightforward

to encode, and a number of different formulations for en-

coding them have been proposed (see e.g. [4]). Alternatively,

there have been some approximation algorithms proposed

for solving the Budget Prize-Collecting Steiner Tree and the

related Budget-Constrained Steiner Connected Subgraph

with Node Profits and Node Costs problems [6, 7]. These

algorithms have a more favorable runtime than exact solu-

tion approaches, but they cannot guarantee that they will

find an optimal solution to the problem of selecting edges to

upgrade. Out of the two structural accessibility measures, we

focus on minimizing the number of connected components.

(3) Minimizing Number of Infeasible Trips
Minimizing the number of infeasible trips (or equivalently,

maximizing the number of feasible trips) uses both the zone-

by-zone distance matrix, D, and the zone-by-zone trip de-

mand matrix, T. Similar to the other problem formulations,

we aim to choose the subset of edges within the given budget

that maximally reduces the number of infeasible trips in a

network.

We begin the analysis of this problem by considering the

effects of adding a single edge, (u,v) ∈ Eupдrade , back into
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Eλ,αU , on the accessibility measures forGλ,α
U . The addition of

this edge could possibly change the shortest paths in the net-

work, thus necessitating the recomputation of D, Cf easible ,
and Cinf easible . Indeed, since we do not know which short-

est paths the newly added edge (u,v) might be part of, the

shortest paths between all pairs of vertices in V must be

recomputed. If we let Pi j represent the set of shortest paths

that go from zone i to zone j in the original graph Gλ,α
U ,

and let P ′i j represent the same for G = (V ,Eλ,αU ∪ {(u,v)}),
then we only need to recompute entries inD, Cf easible , and
Cinf easible for pairs of zones i and j for which Pi j and P

′
i j

differ. The running time of the all pairs shortest path com-

putation dominates this update, taking O(|V |2 log |V |) with
Dijkstra’s algorithm.

As our goal is to minimize the number of infeasible trips, we

will need to exactly evaluate the effect of adding different

sets of edges back into Eλ,αU . Since there are combinatorially

many possible sets of edges to upgrade, it is impractical to

attempt a brute-force search for the optimal set of edges.

A common strategy for solving this type of problem is to

iteratively build a solution, which in our case is a set of

edges to fortify that are within our budget constraint, by

greedily choosing the single “best” candidate, adding it to

the solution, and repeating until the budget is exhausted. As

we have shown in the paragraph above, each evaluation of

the quality of a solution to our problem is computationally

expensive, therefore, even this naive approach is too costly to

run in a reasonable amount of time. As an example, in the λ =
100,α = 1.0 case there are ≈ 1000 edges that are considered

flooded. Here we must evaluate the quality of a solution

that considers adding the first edge, then the second edge,

etc. This first iteration will take 1000 calls to the evaluation

method, and choose a single edge to add to the solution. This

leaves 999 edges, each of which must be evaluated again,

etc. Assuming that each edge will cost 1 unit of budget to fix

and that our evaluation computation takes 5 seconds to run,

given a budget of 100, this iterative greedy algorithm will

take at least 52 days to complete.

Considering this, we implement a further simplification of

the greedy algorithm described above. This algorithm per-

forms a single pass over the candidate edges, Eupдrade , and

calculates the benefit of adding each to Gλ,α
U in turn. With

this information we sort the edges by order of their cost

benefit ratio, then simply pick the edges with the largest cost

benefit ratio until the budget is exhausted.

(4) Minimizing Average Trip Distance
One outcome of flooding is that the original shortest path

between a pair of locations in the business-as-usual may

be unavailable and is replaced by a longer unflooded path.

This effect causes an increase in the average trip distance

within the road network, meaning that routes within the

road network are less efficient. In order to counteract this

effect, we consider upgrading the set of roads that maximally

reduces the average trip distance in a network, subject to

the same budget constraint on the cost of repairs as before.

Note that this problem suffers from the same computational

difficulties as that of minimizing the number of infeasible

trips. Each time an edge is considered as a candidate for

upgrading, the number of feasible and infeasible trips and

the average shortest path distances between cell tower zones

must be recomputed, since both of these affect the overall

average trip distance. It is possible to implement a similar

greedy approach to tackle this problem. However, with this

objective there is the added factor that adding an edge can

actually increase the average trip distance by making pre-

viously infeasible longer trips possible. For this reason, out
of the two travel demand-aware accessibility measures, we

focus on minimizing the number of infeasible trips.

3 RESULTS
In Section 2 we have proposed a series of computational modules

that can be used to plan road network improvements that improve

different mobility related objectives under different budgets and

flooding scenarios. Here, we discuss both the results from this

process for a particular flooding scenario, and, more broadly, con-

siderations to take when using optimization tools to achieve policy

objectives.

The results we show are for the 100 year flooding return period

with α = 1.0. In Figure 7 we show the four accessibility metrics

computed on the flooded road network without any improvements,

and with the improvements suggested by our two optimization

algorithms for four different budgets: {100, 200, 300, 400}. In these

graphs, the business-as-usual accessibility metric is shown as a

black horizontal line. The two optimization algorithms are mini-

mizing different objectives, namely the number of connected com-

ponents in the network and the percent of impossible trips over

the network. As discussed in the previous section, the solutions ob-

tained using the algorithm that minimizes the number of connected

components are optimal, i.e they reduce the number of connected

components by the largest amount possible under a given budget.

The solutions obtained for minimizing the percent of impossible

trips are not optimal, but constructed naively through a simple

greedy heuristic. This discrepancy is reflected in the top graph of

Figure 7, where, with a budget of 300 and 400, the algorithm that

minimizes the number of connected components is able to find

solutions that have smaller numbers of infeasible trips than the

algorithm that actually minimizes the number of infeasible trips.

The third graph in Figure 7 shows the non-linear trade-offs

between the optimization budget and solution quality. In particular,

there is a large jump in solution quality, in terms of the number of

nodes in the largest connected component, when increasing the

budget from 100 to 200 (in the solution found by minimizing the

number of connected components). Further budget increases do

not afford the same large jumps in solution quality, i.e. they exhibit

diminishing returns.

We observe another trade-off between solution qualities and

optimization objectives in the third and fourth graphs. Here, the

solutions found by the two algorithms are fundamentally differ-

ent. As we discussed in the previous paragraph, the algorithm that

minimizes the number of connected components quickly creates

a large connected component (the jump between budgets of 100
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Figure 7: Results of optimization methods.

and 200), without any consideration to numbers of feasible trips, or

average trip distances. This naivety is reflected by the correspond-

ing large increase in the average trip distance. This behavior is not
present in solutions found through the other algorithm. The algo-

rithm that minimizes the percent of infeasible trips finds solutions

with slightly fewer infeasible trips but with smaller average trip

distances.

In Figure 8 we show similar maps to those from Figure 6, but

with the optimized solutions found by both optimization algorithms

for budgets of 100 and 300. The first column of Figure 8 shows the

distance from each city (Dakar and Tambacounda) under the road

networks given in the λ = 100, α = 1.0 flooding scenario. The

second and third columns show how the improvements, suggested

with a budget of 100 and 300 respectively, translate into larger ar-

eas becoming accessible from each city, and shorter trip distances.

The maps in the top two rows are created with the algorithm that

minimizes the number of connected components, while the maps in

the bottom two rows are created with the algorithm that minimizes

the percent of infeasible trips. By comparing the two maps in the

last column from the first two rows, to the same maps from the

last two rows, we can see the difference in behaviours of the opti-

mization strategies. There are few places in the first set of results

that remain unreachable from Dakar or Tambacounda, because the

algorithm minimizes the number of connected components. This

is not the case in the second set of results, as the algorithm that

minimizes the percent of infeasbile trips will prioritize areas with

high volumes of trips. This difference must be carefully understood

for any optimization algorithm used in planning purposes.

4 DISCUSSION
Our results show that the accessibility provided by the Senegalese

highway system will be significantly impacted even under flood-

ing scenarios with return periods in the range of 20 to 50 years.

Thus, the success of transportation development schemes in Sene-

gal may be threatened by potentially near-future hazards and it

is ever more urgent that present efforts to build climate-resilient

infrastructure take these risks into account. Our framework inte-

grates flood hazard, societal impact and financial consideration to

provide recommendations to policy-makers for regions in which to

prioritize investments.

In order to derive a cost-effective road improvement solution, it is

important to explicitly incorporate financial constraints into the op-

timization process. The reasoning for this is clear: any sub-optimal

solution can be replaced with an optimal one that achieves greater

benefit with no additional cost; or alternatively, the same amount

of benefit could be achieved with significant savings. Funding agen-

cies and decision makers may be interested in a range of metrics

for quantifying the resilience of transportation infrastructure to

flooding. Our framework allowed us to compare optimizing road

network improvements according to several different accessibility

measures. However, we found that these accessibility objectives

differed significantly in terms of the ease with which optimal so-

lutions could be obtained. Minimizing the number of connected

components in the road network was the easiest accessibility mea-

sure to optimize, compared to maximizing the size of the largest

connected component, minimizing the number of infeasible trips
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Optimization results for minimizing the number of connected components

Optimization results for minimizing the percent of infeasible trips

Figure 8: Optimization results for minimizing the number of connected components (top two rows) and for minimizing the
percent of infeasible trips (bottom two rows). These results show how the road network becomes more accessible given larger
budgets.
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and minimizing the average trip distance. In contrast, optimizing

with the other three accessibility measures resulted in computa-

tionally hard problems, and finding the optimal solution to these

problems is not guaranteed. In fact, the reduction in infeasible trips

obtained by minimizing the number of connected components was

comparable to that obtained by the (sub-optimal) solutions obtained

by directly minimizing the number of infeasible trips.

Aside from ease of computability, the different accessibility mea-

sures prioritize regions of Senegal differently. This may be of in-

terest to policy makers and government agencies concerned with

trade-offs between strategies that benefit the population as a whole

versus those that attempt to equitably distribute benefits to more

vulnerable regions. For instance, we found that minimizing the

number of connected components resulted in greater accessibility

to rural regions in the east of Senegal from Tambacounda, whereas

minimizing infeasible trips led to a greater focus on accessibility

around Dakar and the relatively densely-populated west. This re-

sult highlights a need for careful consideration into the intended

outcomes of national-scale road network improvements and how

these outcomes are reflected in the choices of measures of regional

accessibility or vulnerability.

Finally, the framework we present here is flexible enough to be

extended and adapted in a number of ways to build climate change

resilience into development planning. One obvious refinement of

our current approach is to replace the flood risk module with a pre-

dictive module that can take weather data as inputs to predict flood

extents and depths, which can then be used in combination with

climate change models to evaluate flood-related mobility impacts

under different climate change scenarios. Vulnerability to other

climate change-related hazards, such as droughts or wildfires, can

also be incorporated to develop a more complete picture of climate

change exposure and risks faced in different regions. The travel

demand module could also be adapted to focus on roads and zones

within cities, or the accessibility measures could be modified to

weigh rural regions more heavily or prioritize routes needed for

the distribution of disaster relief resources, for example. Finally,

the optimization module can be extended to balance multiple pol-

icy objectives, to determine an optimal schedule for road network

improvements in a long-term setting, or to find solutions that are

robust to uncertainties in flooding scenario, travel demand or repair

costs.
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